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Abstract. Identification of various emission sources and
quantification of their contributions comprise an essential
step in formulating scientifically sound pollution control
strategies. Most previous studies have been based on tra-
ditional offline filter analysis of aerosol major components
(usually inorganic ions, elemental carbon – EC, organic car-
bon – OC, and elements). In this study, source apportion-
ment of PM2.5 using a positive matrix factorization (PMF)
model was conducted for urban Shanghai in the Yangtze
River Delta region, China, utilizing a large suite of molec-
ular and elemental tracers, together with water-soluble in-
organic ions, OC, and EC from measurements conducted
at two sites from 9 November to 3 December 2018. The
PMF analysis with inclusion of molecular makers (i.e., MM-
PMF) identified 11 pollution sources, including 3 secondary-
source factors (i.e., secondary sulfate; secondary nitrate; and
secondary organic aerosol, SOA, factors) and 8 primary
sources (i.e., vehicle exhaust, industrial emission and tire
wear, industrial emission II, residual oil combustion, dust,
coal combustion, biomass burning, and cooking). The sec-
ondary sources contributed 62.5 % of the campaign-average
PM2.5 mass, with the secondary nitrate factor being the lead-
ing contributor. Cooking was a minor contributor (2.8 %) to
PM2.5 mass while a significant contributor (11.4 %) to the
OC mass. Traditional PMF analysis relying on major com-
ponents alone (PMFt) was unable to resolve three organics-

dominated sources (i.e., biomass burning, cooking, and SOA
source factors). Utilizing organic tracers, the MM-PMF anal-
ysis determined that these three sources combined accounted
for 24.4 % of the total PM2.5 mass. In PMFt, this signifi-
cant portion of PM mass was apportioned to other sources
and thereby was notably biasing the source apportionment
outcome. Backward trajectory and episodic analysis were
performed on the MM-PMF-resolved source factors to ex-
amine the variations in source origins and composition. It
was shown that under all episodes, secondary nitrate and the
SOA factor were two major source contributors to the PM2.5
pollution. Our work has demonstrated that comprehensive
hourly data of molecular markers and other source tracers,
coupled with MM-PMF, enables examination of detailed pol-
lution source characteristics, especially organics-dominated
sources, at a timescale suitable for monitoring episodic evo-
lution and with finer source breakdown.

1 Introduction

Airborne PM2.5 (i.e., particulate matter with an aerodynamic
diameter of less than 2.5 µm) has attracted increased global
attention due to its well-recognized impact on climate, visi-
bility, and human health (Chow et al., 2004; Liu et al., 2016;
Foley et al., 2010). In recent years, with the increasingly
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prominent air pollution problems in China, more and more
attention has been paid to characterizing the pollution char-
acteristics. Identifying the pollution sources and quantify-
ing their contributions to ambient PM2.5 are of fundamental
significance for PM reduction and air quality improvement
(Chen et al., 2007; Y. X. Zhang et al., 2009).

Receptor models are widely used tools to carry out the
source apportionment of atmospheric PM2.5 (Hopke, 2016;
Jaeckels et al., 2007; Lee et al., 2008; Sofowote et al., 2014).
Compared with other methods, such as chemical mass bal-
ance (CMB) and multilinear engine (ME-2), positive matrix
factorization (PMF; Paatero and Tapper, 1994) does not need
to input source profiles and is able to provide as model out-
come both the source profiles and contributions of various
sources (Wang et al., 2018; Zhou et al., 2019). PMF relies
on marker species to separate and identify different source
factors, and in principle more comprehensive data sets, es-
pecially chemical data of high source specificity, would en-
able more accurate and finer source breakdown for potential
sources contributing to PM2.5.

High-time-resolution measurements are inherently advan-
tageous to the source analysis, as they are able to capture
the diurnal variations in the main source activities (such as
vehicle exhaust) and secondary formation processes. Sample
sizes of over 100 could be acquired within a short time span
on the order of a week, thus providing opportunities to study
pollution source variations for short-term time windows. On-
line measurement-based source apportionment studies avail-
able in the literature have so far been mainly based on the
PM1 Aerodyne aerosol mass spectrometer (AMS) or aerosol
chemical speciation monitoring (ACSM) measurements (Al-
Naiema et al., 2018), which utilize the individual mass frag-
ment from bulk organics. Multiple parent molecules could
lead to the same fragments during the ionization process
in AMS or ACSM, which introduce ambiguity in relying
on fragment ions for source differentiation. In comparison,
molecular markers alleviate such ambiguity and therefore
could significantly improve our ability in source identifica-
tion and quantification. The recently commercialized ther-
mal desorption aerosol gas chromatography–mass spectrom-
etry (TAG) system (Williams et al., 2006; Y. L. Zhao et al.,
2013; Isaacman et al., 2014) has enabled acquiring hourly
data of individual molecular markers, providing opportuni-
ties for more refined source apportionment.

Shanghai, a megacity with a population of 24.3 million
and a total area of 6340 km2, represents a typical economic
zone in China. Air pollution issues in Shanghai are complex
and our knowledge of its aerosol sources still fall short of
being sufficiently quantitative or comprehensive. Past source
apportionment studies of PM2.5 in Shanghai are based on ei-
ther offline filter-based data that are inherently of a low time
resolution (Du et al., 2017; Chang et al., 2018) or emissions-
based numerical models (Li et al., 2015, 2019; Shu et al.,
2019; Feng et al., 2019). PM2.5 source apportionment stud-
ies using online data as inputs have so far been limited to

the major aerosol species (i.e., inorganic ions, carbonaceous
components, and elements; Wang et al., 2018), preventing
proper separation of aerosol sources dominated by organic
compounds.

We recently carried out online monitoring of atmospheric
PM2.5 composition, including inorganic ions, organic car-
bon (OC), elemental carbon (EC), trace elements, and or-
ganic molecular markers, in an urban environment in Shang-
hai from 9 November to 3 December 2018. The description
of the organic speciation data was provided in Wang et al.
(2020) and He et al. (2020). The objective of this work is
to carry out source apportionment of PM2.5 using molecular-
marker-based PMF. Through this work we demonstrate that
the comprehensive hourly data of molecular markers and
other source tracers have significantly enhanced our ability in
resolving organics-dominated PM2.5 sources and the source
apportionment could be achieved at a timescale suitable for
monitoring episodic evolution. The results from this work
can provide support for the development of air pollution pre-
vention and control strategies.

2 Methods

2.1 Online measurements

Online PM2.5 and its major chemical composition (i.e., inor-
ganic ions, OC, EC, and elements) and organic markers were
measured from 9 November to 3 December 2018. Two ur-
ban sites were involved. The PM2.5 mass, inorganic ions, OC,
EC, and elements were measured at Shanghai Pudong Envi-
ronmental Monitoring Station (PD; 31.23◦ N, 121.53◦ E), a
typical urban site for the city (Q. Zhao et al., 2013). The or-
ganic markers were measured at the Shanghai Academy of
Environmental Sciences (SAES; 31.17◦ N, 121.43◦ E), also
a representative urban site of the city (Wang et al., 2018).

The concentration of hourly PM2.5 was measured by an
online beta attenuation particulate monitor (FH 62 C14 se-
ries, Thermo Fisher Scientific; Qiao et al., 2014). Carbona-
ceous components (OC and EC) were monitored by a semi-
continuous OC–EC analyzer (model RT-4, Sunset Labora-
tory, Tigard, OR, USA; Nicolosi et al., 2018; Zhang et al.,
2017). The water-soluble inorganic ions were measured by
the Monitor for AeRosols and GAses (MARGA, Model ADI
2080, Applikon Analytical BV; Makkonen et al., 2012; Grif-
fith et al., 2015). Concentrations of elements in PM2.5 were
measured by an ambient elemental monitor (Xact 625 Ambi-
ent Continuous Multi-metals Monitor, Cooper Environmen-
tal Services, Tigard, OR, USA) using energy-dispersive X-
ray fluorescence (XRF) analysis (Battelle, 2012; Jeong et
al., 2019). The meteorological parameters and gas pollu-
tants data were obtained from the open data set at Shang-
hai Hongqiao International Airport (available at http://www.
wunderground.com, last access: 7 September 2020).
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Quantification of hourly speciated organic mark-
ers was achieved using thermal desorption aerosol gas
chromatography–mass spectrometry (TAG; Aerodyne Re-
search Inc., https://www.aerodyne.com/wp-content/themes/
aerodyne/fs/TAG_0.pdf, last access: 7 September 2020). The
operation details and data quality are described in a separate
paper (Wang et al., 2020), and only a brief description will
be presented here. Briefly, ambient air was drawn through
a PM2.5 cyclone, then the sampled air was collected after
passing through a carbon denuder to remove the gas phase,
and only particles were collected onto the collection matrix.
The organics were then desorbed and transferred from the
collection matrix to the gas chromatography (GC) spectrom-
eter column, with in situ derivatization of the polar organics
under a variable stream of saturated helium with a derivatiza-
tion agent (N-methyl-N-(trimethylsilyl)trifluoroacetamide).
After GC column separation, the target organics entered the
mass spectrometry (MS) chamber for analysis. It should be
noted that with the current TAG instrument setup, 1 hourly
sample was collected at every odd hour, thus generating
12 hourly samples in a 24 h cycle. The postsampling steps,
including in situ derivatization, thermal desorption, and gas
chromatography–mass spectrometer (GC–MS) analysis,
took ∼ 1.5 h, and the next sampling started concurrently
with the GC–MS analysis step, lasting for a full hour.

The two measurement sites involved in this work are
12 km apart. Map locations of the two monitoring sites are
shown in Fig. 1. Figure S1 in the Supplement provides aerial
site photos, showing similar urban surroundings at the two
sites. More importantly, monitoring data indicate that the two
sites shared similar pollutant characteristics. Figure S2 com-
pares the time series of PM2.5 mass and gaseous criteria pol-
lutants (CO, SO2, and NO2), exhibiting excellent site-to-site
agreement in pollutant concentrations (Table S1 in the Sup-
plement). No OC and EC measurements were made at SAES.
Instead, black carbon (BC) and bulk organic aerosol (OA) in
PM1 were monitored at this site by an aethalometer and an
AMS. Figure S3 compares BC at SAES with EC at PD and
compares PM1 OA at SAES with OM (organic matter, esti-
mated from OC) at PD, showing a high degree of consistency
between these two pairs of related quantities. We refer read-
ers to Sect. S1 in the Supplement for more details. Overall,
it is rational to pool together data from the two sites to form
a more comprehensive data set for source apportionment of
PM2.5 pollution sources that are typical of the general urban
environment in Shanghai as represented by the two sites.

2.2 PMF receptor model

PMF is a bilinear factor analysis method, which is widely
used to identify pollution sources and quantify their contri-
butions to the ambient air pollutants at receptor sites, with an
assumption of mass conservation between emission sources
and receptors. In this study, the United States Environmental
Protection Agency (USEPA) PMF version 5.0 (Norris et al.,

2014) was applied to perform the analysis. PMF decomposes
the measured data matrix, Xij , into a factor profile matrix,
fkj , and a factor contribution matrix, gik , (Eq. 1):

xij =
∑p

k=1
gikfkj + eij , (1)

Q=
∑n

i=1

∑m

j=1
(eij/uij )

2, (2)

where Xij is the measured ambient concentration of target
pollutants, gik is the source contribution of the kth factor to
the ith sample, fkj is the factor profile of the j th species in
the kth factor, and eij is the residual concentration for each
data point. PMF seeks a solution that minimizes an object
functionQ (Eq. 2), with the uncertainties in each observation
(uij ) provided by the user.

The PMF model assumes that the quantity of the input
species is conserved and the source profile is unchanged.
In order to minimize the impact of organics degradation on
the deviation of the mass conservation hypothesis, organic
species with low volatility and low reactivity are selected
as input. The assumption of constant source profiles is not
strictly met when the receptor model is applied to measure-
ment data covering a long duration (e.g., months or longer).
The source profiles parsed by PMF can be viewed as the av-
eraged profile over the entire sampling period. In an atmo-
spheric environment, both primary and secondary emission
sources have the problem of changing source profiles. There-
fore, it is highly recommended to obtain high-time-resolution
measurement data, preferably of several hours or shorter, as
an input for the PMF model. The input data in this study
are hourly data for every odd hour, as limited by the organic
tracer measurements, and the time span of the whole cam-
paign is less than 1 month. As such, the source type informa-
tion will not change significantly.

In this study, a total of 289 samples were collected. The
chemical species selected as input to the PMF model include
13 elements, 4 inorganic species, OC, EC, organic markers
(including anhydrosugars, secondary organic aerosol – SOA
– tracers, organic acids, and polycyclic aromatic hydrocar-
bons – PAHs). Two types of PMF, PMFt and MM-PMF as ex-
plained below, were performed. PMFt, referring to traditional
PMF, considers only elements, inorganic ions, OC, and EC as
inputs. MM-PMF, referring to molecular-marker-based PMF
(Al-Naiema et al., 2018; Wang et al., 2017; Y. Zhang et al.,
2009), includes organic markers as inputs in addition to the
chemical species considered by PMFt.

The uncertainty in each data point was calculated accord-
ing to Eq. (3):

uij =

√
(xij ×EF)2+

(
1
2
×MDL

)2

, (3)

where MDL is the method detection limit and EF is the er-
ror fraction determined by the user and associated with the
measurement uncertainties. The concentration data below the
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Figure 1. Location of the two sampling sites in Shanghai, China.

MDL were replaced by 0.5 of the MDL, and the correspond-
ing uncertainty uij was calculated as five-sixths of the MDL.
Missing values were replaced by the median value of the
species, and its uij was assigned as 4 times the median value
(Norris et al., 2014).

2.3 Backward trajectory analysis

Backward trajectory analysis is a useful tool to identify the
influence of air mass paths on PMF-resolved sources (Wang
et al., 2017). Backward trajectories of 36 h duration and ar-
riving at an altitude of 100 m above ground level (a.g.l.) over
the PD site were calculated deploying the 0.5◦ Global Data
Assimilation System (GDAS) meteorological data (https:
//www.ready.noaa.gov/archives.php, last access: 7 Septem-
ber 2020). The trajectories were then classified into different
clusters according to the geographical origins and movement
process of the trajectories using the TrajStat model (Zhang et
al., 2020).

3 Results and discussion

The time series of hourly meteorological parameters and
PM2.5 major components during the whole monitoring pe-
riod are shown in Fig. 2. The average temperature (T ) was
14.6±2.9 ◦C, the relative humidity (RH) was 80±15 %, and
the wind speed (WS) was 3.2± 1.6 m s−1 during the cam-
paign. The average concentrations of the PMF input species
are listed in Table 1 for PM2.5 and its major components

and in Table 2 for the organic markers. The average PM2.5
concentration was 46±34 µg m−3, with nitrate and OM con-
tributing 32 % and 25 % of the total mass, respectively. Sul-
fate and ammonium contributed 16.5 % and 16.2 % of the
PM2.5, respectively. The measured total elements account
for 3.5 % of PM2.5 mass on average. Reconstructed PM2.5
using the individual major components and the measured
PM2.5 mass showed good mass closure (slope= 0.93 and
R2
= 0.98 in Fig. S4).

3.1 PM2.5 source apportionment

In this study, PMF source analysis was conducted in two
scenarios, i.e., MM-PMF with molecular markers and PMFt
without inclusion of molecular markers. The abundance and
nomenclature of the organic markers used are summarized in
Table 2. The preferential input species for PMF analysis are
those with high abundance and known to be specific to cer-
tain sources. Generally, organic markers with lower volatil-
ity and lower reactivity were selected as input species for
MM-PMF. Highly correlated organic markers (R>0.8), in-
dicating common sources, were grouped together to reduce
the number of species and to avoid collinearity problems in
MM-PMF (Wang et al., 2017).

3.1.1 MM-PMF results

In PMF, the optimal number of factors is a compromise be-
tween identifying factors with the best physical explanations
and achieving a sufficiently good fit for all species. In PMF
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Figure 2. (a) Time series of wind speed (WS) and wind direction (WD), (b) time series of temperature (T ) and relative humidity (RH), and
(c) time series of PM2.5 and its major components during the sampling period from 9 November to 3 December 2018. OM is estimated by
assuming an OM/OC ratio of 1.8. Water soluble ions are the sum of Cl−, Na+, K+, and Mg2+. Crustal materials are calculated as the sum
of the oxidized form of the crustal elements (i.e., crustal= 2.49[Si]+ 1.63[Ca]+ 2.42[Fe]). During 30 November to 1 December 2018, the
major inorganic ions measured by MARGA are not available. The red line in (c) indicates the PM2.5 level at 75 µg m−3; PM2.5 concentrations
higher than that are denoted as episodes; and the three episodes (EP1–3) are shaded in gray.

Table 1. Measured PM2.5 major components (µg m−3) used in the
PMF analysis in this study.

Compound Average SD

PM2.5 46 34
Cl− 0.78 0.52
Nitrate 14.8 15.1
Sulfate 7.7 4.3
Ammonium 7.5 6.3
EC 1.59 1.13
OC 6.5 2.8
As 0.006 0.005
Ba 0.024 0.017
Ca 0.137 0.104
Cr 0.004 0.005
Cu 0.012 0.008
Fe 0.45 0.63
K 0.38 0.196
Mn 0.065 0.069
Ni 0.004 0.003
Pb 0.025 0.026
Si 0.42 0.32
V 0.0031 0.0029
Zn 0.114 0.099

solutions of too few factors, different sources are combined
and unresolved and the resolved sources cannot fully explain
the individual species. On the other hand, in PMF solutions
of too many factors, one source may be split into multiple
uninterpretable factors. Initially, 7 to 14 factors were tested,
and the optimal factor number was determined by examin-
ing the changes in Q/Qexp (Fig. S5). Finally, the 11-factor
solution for MM-PMF was selected as it gives the most rea-
sonable factor profiles (detailed description in Sect. S2). Ta-
ble S2 shows the summary of error estimation diagnostics
from bootstrap (BS), displacement (DISP), and bootstrap
combined with displacement (BS–DISP) for the MM-PMF
base run. Generally, BS and DISP results indicated robust
PMF solutions. However, BS–DISP results showed higher
uncertainties which may be due to the limited sample size
in the study. It should be noted that vehicle exhaust showed
the lowest BS mappings and a high chance of mixing with
the secondary nitrate factor. The base run results show cer-
tain degrees of factor mixing; for example∼ 20 % of biomass
burning tracers levoglucosan and mannosan were mixed with
the secondary nitrate factor. Subsequently, a constrained run
was performed to constrain levoglucosan and mannosan to
be only present in the biomass burning factor (Wang et al.,
2017). The summary of the model performance of individual
input species for the 11-factor solution in MM-PMF is given
in Table S4.

The factor profiles of the 11-factor constrained run of MM-
PMF are shown in Fig. 3, together with the time series of con-
tributions from individual source factors. The diurnal varia-
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Table 2. Abundance and naming of measured organic markers (ng m−3) used in the MM-PMF analysis.

Naming Grouping Average SD

PAHs252 Benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, and benzo[a]pyrene 1.44 1.43
PAHs276 Benzo[ghi]perylene and indeno[1,2,3-cd]pyrene 0.56 0.53
C6−8 DICAs Adipic acid, pimelic acid, and suberic acid 17.5 18.5
C9 acids 9-Oxononanoic acid and azelaic acid 9.3 6.5
SFAs Palmitic acid and stearic acid 72 61
Mannosan 1.54 1.51
Levoglucosan 46 39
OHBAs 3-Hydroxybenzoic acid and 4-hydroxybenzoic acid 1.05 0.85
α-pinT Pinic acid and 3-methyl-1,2,3-butanetricarboxylic acid 21 19.2
DHOPA 2,3-Dihydroxy-4-oxopentanoic acid 3.9 4.9
Phthalic acid 9.1 10.3

tions in individual factor contributions are shown in Fig. 4. In
summary, three secondary sources are resolved, namely, the
secondary sulfate factor, secondary nitrate factor, and SOA
factor. Eight primary sources are resolved, and they are ve-
hicle exhaust, industrial emission and tire wear, industrial
emission II, residual oil combustion, dust, coal combustion,
biomass burning, and cooking. The correlations of each fac-
tor contribution with meteorological parameters (WS, T , and
RH) and gaseous pollutants (SO2, CO, and NOx) are shown
in Table S6. The average factor contributions to PM2.5 and
OC from individual source factors are shown in Fig. 5.

The secondary nitrate factor (F1) is identified by high con-
tributions of nitrate and ammonium (36 % and 50 %, respec-
tively). The secondary sulfate factor (F2) is characterized by
high loadings of sulfate (30 %) and ammonium (17 %). Small
amounts of organic acids and PAHs are also present in the
factor. The diurnal variations in F1 show higher contribu-
tions during the nighttime (e.g., 21:00–05:00 LT; all times
throughout the paper are given in local time) and lower con-
tributions during the daytime (e.g., 09:00–13:00). The higher
contributions of secondary nitrate in the nighttime hours may
be due to the lower nighttime temperature favoring the shift-
ing of ammonium nitrate to the particle phase. Contributions
of F2 lack obvious diurnal patterns (Fig. 4), which may in-
dicate the influence from regional transport, and this spec-
ulation is supported by the backward trajectory analysis in
Sect. 3.2. F1 has a moderate correlation with NOx (R = 0.50)
and a high correlation with CO (R = 0.70), while F2 does
not show evident correlations with gaseous pollutants or me-
teorological parameters (Table S6). F1 and F2 contributed
30.4 % and 15.3 % to the total PM2.5 mass and 20.4 % and
21.2 % to the total OC, respectively (Fig. 5).

The third factor (F3) shows a high abundance of EC (38 %)
and is identified to be vehicle exhaust. It also contains high
loadings of OC, Ca, and Cu, as well as some organic trac-
ers (PAHs and organic acids) in the profile. Vehicle exhaust
is an important source of carbonaceous species, and the pres-
ence of Cu in vehicle exhaust may originate from both fuel or
lubricant combustion and brake abrasions (Adachi and Tain-

osho, 2004; Pant and Harrison, 2013), and the element Ca
may be derived from road dust. The influence of vehicle ex-
haust on this factor is supported by the peak hours at 07:00–
09:00 and 17:00–19:00 in the diurnal variation (Fig. 4), co-
inciding with the morning and afternoon rush hours. In addi-
tion, F3 has high correlations with NOx (R = 0.68) and CO
(R = 0.48), further supporting the association of this factor
with vehicle exhaust. F3 contributed with 12.6 % of the total
PM2.5 mass and 19.4 % of OC on average.

The profile of the fourth factor (F4) contains high loadings
of Fe and Mn. Industry activities related to steel production
often emit a large quantity of these metallic elements (Men
et al., 2019). These metals, together with Cu and Zn, are
also reported by Pant and Harrison (2013) and Wang et al.
(2018) to be associated with nonexhaust vehicle emissions
such as tire wear. The diurnal variation in F4 is similar to
that of F3 and shares the commonality of peaking during the
morning and afternoon rush hours, supporting its association
with tire wear emissions. F4 shows a high correlation with
NOx (R = 0.49), and NOx in the Yangtze River Delta mainly
originates from industrial and vehicular pollution sources (Fu
et al., 2013). Therefore, F4 is considered a mixed source
of industrial emissions and tire wear. The contributions of
this factor to the total PM2.5 mass and OC were minor, only
3.8 % and 2.1 %, respectively. Industrial emission and tire
wear could not be resolved as a separate source in the source
apportionment analysis based on offline filter samples in this
region (Du et al., 2017; Huang et al., 2014; Qiao et al., 2016).
This inability is lifted with the hourly data, thus indicating
the benefit of online high-time-resolution measurements.

The fifth factor (F5) is characterized by high loadings of Cr
(74 %), Ni (31 %), and Zn (29 %); see Fig. 3. Cr compounds
are widely used in industrial activities such as plating, tan-
ning, and metallurgy (Karar et al., 2006; Borai et al., 2002).
In addition, this factor shows a strong correlation with CO
(R = 0.68). Thus, it is regarded as industrial emission II. No
diurnal variation is observed in this factor (Fig. 4). Factor
contributions of F5 to total PM2.5 and OC mass were minor,
only 2.0 % and 1.1 %, respectively.
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Figure 3. Individual source profiles of the 11 factors resolved in the constrained MM-PMF run (a) and time series of individual factor
contributions (b).

The residual oil combustion factor (F6) is identified by
high loadings of V (83 %) and Ni (32 %); see Fig. 3. V is
often used as a source tracer for residual oil combustion (M.
J. Zhao et al., 2013). The contributions of the residual oil
combustion mainly come from shipping transportation due
to the coastal geographical location of Shanghai. The V/Ni
ratio in the factor profile is 2.7, close to the ratio of fuel oil
used in the Shanghai port (3.6 in M. J. Zhao et al., 2013).
The diurnal variation in this factor shows slightly higher
concentrations during the nighttime (e.g., 21:00–23:00 and
03:00–07:00). F6 is a minor contributor to PM2.5, account-
ing for 2.0 %, while its contribution to OC is higher (7.1 %).
Therefore, residual oil combustion is an important pollution
source, especially to OM.

The dust factor (F7) is distinguished by crustal elements
Ca, Si, and Ba. The diurnal variation in this factor shows a
broad peak during the daytime, which could be explained by
more activities causing dust suspension in the daytime (e.g.,
construction, road traffic). This factor contributes 4.2 % and
2.0 % to the total PM2.5 and OC mass, respectively.

F8 contains a high abundance of As and Pb, which identi-
fies this factor to be associated with coal combustion (Chen
et al., 2013). The diurnal variation in the factor shows higher
contributions in the daytime. Good correlations with SO2
(R = 0.68) and CO (R = 0.68) further support the identi-
fication of this factor. No specific organic tracers such as

PAHs are present in this source profile (Fig. 3). These re-
sults are different from those of Wang et al. (2017) and Yu et
al. (2016), which may be attributed to regional differences in
source profiles. F8 contributes with 5.3 % of total PM2.5 and
5.6 % of OC, respectively.

The ninth factor (F9) is identified as biomass burning by
high loadings of levoglucosan and mannosan. Levoglucosan
and mannosan are uniquely emitted by biomass burning ac-
tivities (Engling et al., 2006; Feng et al., 2013), thereby serv-
ing as reliable source tracers to indicate biomass burning in
source analysis (Wang et al., 2019; Bond et al., 2007). In
comparison, it is well documented that elemental potassium
(K) suffers from potential interferential sources such as dust
and firework emissions (Yu et al., 2019). The source pro-
file of the biomass burning factor also contains high load-
ings of five-ring and six-ring PAHs that are considered to
be derived from mixed combustion sources (including coal
combustion and biomass burning; Fig. 3). The diurnal vari-
ation in biomass burning shows higher contributions during
the nighttime. On average, this factor contributes 4.8 % and
2.7 % to the total PM2.5 and OC mass, respectively.

The cooking factor (F10) was distinguished by SFAs
(palmitic acid and stearic acid) and C9 acids (9-oxononanoic
acid and azelaic acid). The diurnal variation in the cooking
factor shows obvious peaks at lunchtime (11:00–13:00) and
dinnertime (17:00–21:00), which are in accordance with the
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Figure 4. Diurnal variation in individual source factors resolved by MM-PMF (25th and 75th percentile boxes, 10th and 90th percentile
whiskers; lines inside the boxes represent the hourly median, and the red points represent the hourly mean).

Figure 5. Percentage contributions of individual source factors to (a) PM2.5 and (b) OC based on MM-PMF.
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local dining consumption habits in Shanghai. Although the
cooking factor contributes only a small fraction of PM2.5
(2.8 %), it accounts for 11.4 % of the total OC, indicating
the importance of cooking emissions to OM in the urban
metropolis.

As shown in Fig. 3, F11 is identified as an SOA fac-
tor on the basis of high loadings of a toluene SOA tracer
(2,3-dihydroxy-4-oxopentanoic acid), α-pinene SOA trac-
ers (pinic acid and 3-methyl-1,2,3-butanetricarboxylic acid),
and phthalic acid. Thus, the factor represents mixed an-
thropogenic and biogenic SOA. The diurnal variation shows
slightly higher contributions in the nighttime hours (Fig. 4).
High correlations with SO2 (R = 0.69) and CO (R = 0.79)
are observed (Table S6). Similar temporal variations be-
tween SOA and the secondary nitrate factor are observed
(R = 0.63), especially during episodic hours, which may in-
dicate some commonality in their formation processes. Many
studies have documented the enhancement of biogenic SOA
production by anthropogenic species through creating a more
acidic environment in the aerosol (Jang et al., 2002; Wang et
al., 2017). The SOA factor accounts for 16.8 % of PM2.5 and
7.0 % of OC on average (Fig. 5).

Overall, the MM-PMF source apportionment results indi-
cate that the three secondary sources combined account for
62.5 % (28.9 µg m−3) of the total PM2.5 mass, of which sec-
ondary nitrate and SOA are two major source contributors.
Vehicle exhaust is the largest primary source contributing
to PM2.5. OC contributions from the secondary sulfate, sec-
ondary nitrate, and SOA factors are assumed to be secondary
OC (SOC), whereas OC from the other factors is assumed to
be primary OC (POC). The SOC from the three secondary
factors accounts for 48.6 % (3.09 µgC m−3) of the total OC
mass on average across the whole study period. The high
loadings of OC in the secondary nitrate and sulfate factors
may indicate commonality in the formation processes lead-
ing to secondary inorganic and organic products and a lack of
specific tracers to separately account for the formation path-
ways of many of the secondary organic products. POC ac-
counted for 51.4 % (3.27 µgC m−3) of the total OC, with ve-
hicle exhaust and cooking emissions contributing the most.

3.1.2 Impact of organic markers on source
apportionment

The PMF model without organic markers (PMFt) was per-
formed to examine the impact of inclusion of organic trac-
ers on PMF. The input data for PMFt are the same as for
MM-PMF except the organic molecular markers. In PMFt,
eight factors are resolved, and three factors, biomass burning,
cooking, and SOA, cannot be extracted due to the lack of the
corresponding organic markers. The source profile and error
estimation of the eight-factor solution of PMFt are shown in
Fig. S7 and Sect. S2. The correlations of the factor contribu-
tions for the common factors between PMFt and MM-PMF
are shown in Table 3. Generally, the eight common factors,

except for secondary sulfate and vehicle exhaust, correlate
well between the two PMF runs (R = 0.84 to 0.99), indicat-
ing the robustness of the resolved factors. The secondary sul-
fate factor and vehicle exhaust show moderate correlations
(R = 0.46 and 0.53) between PMFt and MM-PMF, reflect-
ing the larger inaccuracy in their PMF-resolved source pro-
files and contributions. This difference is in turn rooted in the
lack of distinct source tracers for the two factors. In the factor
profiles (Figs. 3 and S7), the corresponding highest-loading
species (i.e., sulfate for the secondary sulfate factor and EC
for the vehicle exhaust factor) accounted for less than 30 %,
leading to higher uncertainties in the two factors.

A comparison of individual factor contributions to PM2.5
and OC between MM-PMF and PMFt is shown in Fig. 6.
Generally, larger differences between the two PMF runs are
noted for OC apportionment results than for PM2.5. The con-
tributions from the combined secondary sources are rela-
tively stable, i.e., 62.5 % in MM-PMF vs. 63.9 % in PMFt to
PM2.5 and 48.6 % in MM-PMF vs. 49.1 % in PMFt to OC. In
the absence of organic marker data, the contribution from the
SOA factor is not resolved and distributed into the secondary
sulfate and the secondary nitrate factors, thereby notably in-
flating the contributions from the latter two source factors.
For the primary sources, MM-PMF estimates that biomass
burning and cooking combined contribute to 7.6 % of PM2.5
and 13.9 % of OC. Without organic markers, the PMFt model
would distribute the contributions from these two sources to
other factors, more specifically to coal combustion and resid-
ual oil combustion. Both the two latter sources show a rela-
tively larger difference between the two PMF runs, especially
to OC contributions. The coal combustion contribution to OC
increases from 5.6 % in MM-PMF to 11.1 % in PMFt, and the
residual oil combustion contribution increases from 7.2 % in
MM-PMF to 11.1 % in PMFt. In summary, MM-PMF gener-
ates a more refined allocation of PM2.5 sources through iden-
tifying more contributing sources. In other words, the source
contributions of certain factors are notably biased in PMF
analysis without the organic markers due to either factor mix-
ing or distortion.

3.2 Backward trajectory analysis of
MM-PMF-resolved sources

Figure 7 shows the distributions of backward-trajectory-
cluster means. Four clusters are extracted based on the clus-
tering analysis using the TrajStat model. Cluster 1 represents
air masses originating from the northeastern continental re-
gion, accounting for 17 % of all trajectories. Cluster 2 is the
locally circulating air mass and accounts for 36 % of all tra-
jectories. Cluster 3 (28 % of all trajectories) and cluster 4
(20 % of all trajectories) represent oceanic air masses and
long-range transport air masses, respectively. Based on the
mean trajectory length, more locally formed pollutants are
expected under clusters 2 and 3, while more regionally trans-
ported pollutants could be linked to clusters 4 and 1. The dis-
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Table 3. Correlation (R) of common source factors between PMFt and MM-PMF. The highest correlation for each factor was highlighted in
bold.

PMFt

MM-PMF Secondary Secondary Vehicle Industrial emission Industrial Residual oil Dust Coal
nitrate sulfate exhaust and tire wear emission II combustion combustion

Secondary nitrate 0.84 0.29 0.58 0.33 0.32 −0.03 −0.07 0.34
Secondary sulfate −0.35 0.46 −0.31 −0.48 0.14 −0.38 −0.28 0.07
Vehicle exhaust 0.39 −0.33 0.53 0.43 0.17 0.11 0.22 0.47
Industry tire wear 0.39 −0.25 0.39 0.99 0.13 0.09 0.38 0.21
Industry II 0.62 0.001 0.37 0.11 0.99 −0.13 −0.19 0.63
Residual oil combustion −0.03 −0.33 −0.03 0.05 −0.14 0.99 0.17 −0.09
Dust −0.16 −0.39 −0.18 0.30 −0.15 0.21 0.99 −0.002
Coal combustion 0.70 0.04 0.52 0.18 0.70 −0.12 −0.08 0.97

Figure 6. Comparison of individual factor contributions to PM2.5 (a, b) and to OC (c, d) between MM-PMF and PMFt: (b, d) average mass
contributions (µg m−3) and (a, c) average percentage contributions (%).

tributions of individual air mass trajectories during the obser-
vation period are shown in Fig. S8. The average concentra-
tions of PM2.5 and its major compositions under each cluster
are provided in Fig. S9. Briefly, the PM2.5 concentration was
the highest under the influence of local air masses (i.e., clus-
ter 2), with an average value of 67.7 µg m−3, followed by the
northeastern continental air masses (cluster 1, 59.1 µg m−3).
Lower PM concentrations were observed under the influence
of long-range transport air masses (cluster 4, 20.4 µg m−3)
and oceanic air masses (cluster 3, 30.0 µg m−3).

The MM-PMF factor percentage contributions to PM2.5
under each cluster during the sampling period are shown as
pie charts in Fig. 7, and the mass contributions of the indi-

vidual factors under different clusters are shown in Fig. S10.
The PM2.5 sources evidently vary in their contributions un-
der the influence of air masses of different origins. Sec-
ondary nitrate, secondary sulfate, SOA, and the vehicle ex-
haust factor are the top four source contributors to PM2.5, re-
gardless of air mass cluster type. The secondary nitrate fac-
tor shows the highest contribution under cluster 2 (41.3 %,
23.8 µg m−3) and the lowest contribution under cluster 4
(7.8 %, 1.8 µg m−3), indicating the important contribution
of NOx precursors from local vehicular emissions to the
secondary formation of nitrate aerosol. Secondary sulfate,
however, showed much higher contributions under cluster
4 (37.4 %, 8.5 µg m−3) and cluster 1 (21.7 %, 10.1 µg m−3),
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Figure 7. MM-PMF-resolved source factor contributions to PM2.5 in different clusters during the sampling period. The colored lines in the
map show the backward-trajectory-cluster means of the four clusters resolved by the TrajStat model. The percentage in parentheses after each
cluster is the contribution of the corresponding cluster to all trajectories. The pie chart components represent the percentage contributions of
individual source factors. The size of the pie chart is proportional to the total PM2.5 mass in each cluster.

compared with cluster 2 (7.5 %, 4.3 µg m−3). The results
suggest the regionally sourced characteristic of sulfate-rich
aerosols. The sulfate input from the northeastern continen-
tal region may arise from the increased SO2 emissions from
coal burning due to need of heating supply (Sun et al., 2015).
The SOA factor showed higher contributions under cluster 1
(21.8 %, 10.1 µg m−3) and cluster 2 (18.2 %, 10.5 µg m−3),
compared to clusters 3 and 4 (11.8 % and 10 %, 3.5 and
2.3 µg m−3, respectively), suggesting the combined influence
of locally formed SOA and regionally transported SOA from
the northern continental area. The vehicle exhaust and cook-
ing emissions show comparable mass contributions under
different clusters (3.3–6.0 and 1.1–1.3 µg m−3), consistent
with the local emission characteristics of the two sources
(Fig. S10). For other factors, industrial emission and tire
wear showed the highest mass contributions under cluster 2,
in agreement with the influence of local vehicular emissions.
Residual oil combustion showed the highest contributions
under cluster 3, consistent with the increased influence of
ship emissions when air masses pass over the Shanghai port.
Industrial emission II, biomass burning, and coal combustion
show higher mass contributions under clusters 1 and 2. Dust
shows similar mass contributions among different clusters.

In summary, in the winter period, the accumulation of
pollutants caused by local emission sources such as vehicle

emissions, secondary nitrate, and SOA formation in Shang-
hai is an important cause of PM2.5 pollution. Additionally,
coal burning in northeastern China also significantly affects
the PM pollution in Shanghai under the influence of air mass
movement.

3.3 Episodic analysis of MM-PMF-resolved sources

PM2.5 concentrations higher than 75 µg m−3 and lasting for
more than 24 h are regarded as a PM episode in this study.
Three episodes occurred during the entire measurement pe-
riod (Fig. 2), and they are examined next to understand
the source compositions of PM2.5 during pollution episodes.
The first episode (EP1) occurred from 09:00 on 19 Novem-
ber to 09:00 on 20 November 2018. The second episode
(EP2) occurred from 19:00 on 24 November to 01:00 on
26 November 2018. The third episode (EP3) lasted for al-
most 3 d, starting from 13:00 on 27 November to 07:00
on 30 November 2018. The average wind speed was 3.3,
1.6, and 1.7 m s−1 for EP1, EP2, and EP3, respectively.
The distributions of backward trajectories during the three
episodes are shown in Fig. S11. Briefly, EP1 mainly falls
under the influence of cluster 1, i.e., northeastern continen-
tal air masses. EP2 and EP3 are mainly influenced by clus-
ter 2, i.e., air mass trajectories circulating around the local
area. The average PM2.5 concentrations observed during the
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three episodes were 96.2 µg m−3 for EP1, 79.8 µg m−3 for
EP2, and 109.1 µg m−3 for EP3. The episodic PM concentra-
tions are 3.3 times higher than during the nonepisodic hours.
The highest PM pollution was observed in EP3 under local
air mass influence (i.e., cluster 2) with a calm wind speed
conducive to the accumulation of pollutants. The chemical
compositions of PM2.5 for the three episodes are shown in
Fig. S12.

The source contributions of PM2.5 under the three episodes
are shown in Fig. 8 and compared with the average contri-
butions during the nonepisodic hours. In the three episodes,
obviously increased contributions from SOA and secondary
nitrate are noted, with contributions increased from 3.4
and 7.0 µg m−3 in the nonepisodes to 17.2–20.2 and 10.6–
38.5 µg m−3 in the episodes, respectively. Comparing source
contributions among the three episodes, EP2 and EP3 show
similar percent source contributions among the sources,
while the source contributions in EP1 are different. In
EP1, under the influence of the northeastern continental air
mass, enhanced contributions are noted from secondary sul-
fate, coal combustion, biomass burning, and industrial emis-
sion II, in line with the study of Hua et al. (2018) on the
source analysis of PM2.5 in the Beijing area. EP2 and EP3,
under the influence of a locally circulating air mass, showed
obviously higher contributions to PM2.5 from secondary ni-
trate than EP1 (45 %–49 % vs. 15 %; Fig. 8). Common to
all three episodes is the consistent high contribution of the
SOA factor to PM2.5 (24 %–28 %), indicating the persistent
input of this source factor on PM pollution during differ-
ent episodes. Vehicle exhaust also showed similar percent-
age contributions to PM2.5 among the three episodes (9 %–
10 %). The remaining factors, all being minor contributors to
PM under the episodic hours, showed similar contributions
among the three episodes.

4 Conclusions

We carried out a source apportionment study through utiliz-
ing hourly measured PM2.5 and its chemical components, in-
cluding water-soluble inorganic ions, carbonaceous species,
and trace elements, and organic molecular markers which
were measured at every odd hour in a 3-week field cam-
paign in winter in urban Shanghai, a megacity in the Yangtze
River Delta region, China. The PMF receptor modeling,
with the comprehensive chemical speciation data as inputs
(i.e., MM-PMF), has resolved 11 source factors, among
which 3 organics-dominated factors, namely an SOA fac-
tor, biomass burning, and cooking factor, were resolved from
other sources due to the availability of the organic marker
data. Secondary nitrate and SOA are two major sources con-
tributing to PM pollution in this urban environment. The
three secondary sources combined (i.e., sum of the secondary
nitrate, secondary sulfate, and SOA factor) contributed to
more than 60 % of PM2.5 mass and 48.6 % of the total OC.

Figure 8. Source contributions to PM2.5 from individual MM-PMF
source factors during the three episodes encountered in the measure-
ment period: (a) mass contributions (µg m−3) and (b) percentage
contributions (%). The source contributions for nonepisodic hours
are also included for comparison.

PMF analysis without organic markers (i.e., PMFt ) was also
conducted for comparison. The three factors (i.e., SOA fac-
tor, biomass burning, and cooking emissions) could not be re-
solved as separate sources without the organic markers. Con-
sequently, their source contributions would be distributed to
other sources, biasing the source apportionment results by
PMFt.

The backward trajectory clustering analysis on the MM-
PMF-resolved source contributions revealed the impact of
the air mass origins on different source factors. Secondary
nitrate showed much higher contributions under local air
mass influence, while secondary sulfate showed higher con-
tributions under the influence of northeastern continental
and long-range transport air masses. Three episodic events
occurred during the measurement period, and our analysis
showed enhanced contributions from secondary nitrate and
SOA factors in episodic hours. Increased contribution from
secondary sulfate was observed in the episode influenced
by northeastern continental air masses. The results indicated
that PM pollution in winter in the Shanghai area is greatly
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affected by both local pollutant emissions and the regional
transport from the northeastern continental regions.

This study has demonstrated with field observation data
that the combination of online organic molecular markers
and elemental tracers and other PM major components pro-
vides more comprehensive characterization of the PM pollu-
tion sources, in particular those dominated by organics which
would otherwise be mixed into other sources and bias the
sources apportioned to these “other sources”. The hourly res-
olution in source factor contributions allows convenient uti-
lization of those hourly data that have been routinely mea-
sured or obtained (e.g., meteorological conditions, gas pollu-
tants, and backward trajectories analysis) to achieve an in-
depth understanding of the source origins. The high-time-
resolution data have also enabled the examination of pol-
lution characteristics of different short-term PM pollution
episodes. It is suggested that future studies deploying online
MM-PMF include more organic markers such as hopanes
and additional SOA tracers to resolve more source types of
PM pollution. Also, MM-PMF for different ambient condi-
tions is recommended to gain a more comprehensive under-
standing of the PM pollution sources at a given location.
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